Ben 35 terremoti cosmici rilevati a Cascina da Virgo

I dati di 35 nuovi eventi di onde gravitazionali osservati tra novembre 2019 e marzo 2020, durante la seconda parte del terzo e più recente periodo di osservazione di LIGO e Virgo (O3b), portano a 90 il numero totale di segnali gravitazionali rilevati finora dalla rete globale dei tre interferometri. La maggior parte dei nuovi segnali ha origine dal vorticoso avvicinamento di due buchi neri fino alla loro fusione: veri e propri terremoti cosmici, che scuotono il tessuto dello spazio-tempo, generando una potente emissione di onde gravitazionali.

Altri due eventi, di cui uno già annunciato lo scorso giugno, sono stati invece identificati come fusioni tra una stella di neutroni e un buco nero, una fonte osservata per la prima volta in quest'ultimo periodo di osservazioni di LIGO e Virgo.

Un ulteriore evento, rivelato nel febbraio 2020, potrebbe provenire da una coppia di buchi neri o da una coppia mista di un buco nero con una stella di neutroni. In effetti la massa dell'oggetto più leggero cade in un intervallo, il cosiddetto mass gap, dove prima delle rivelazioni gravitazionali non ci si aspettava che si formassero né stelle di neutroni né buchi neri e rimane quindi un enigma per gli scienziati. Questi nuovi risultati sono stati pubblicati oggi dalle collaborazioni scientifiche di Virgo, LIGO e KAGRA nel terzo catalogo delle sorgenti transitorie di onde gravitazionali (GWTC-3), sull’archivio online ArXiv. Il catalogo è accompagnato da altre due pubblicazioni incentrate sulle conseguenze cosmologiche e astrofisiche dei dati.

Non appena un segnale viene riconosciuto come un potenziale evento astrofisico dal sistema di analisi dati del rivelatore, e verificato dai ricercatori, alcune informazioni preliminari sulla localizzazione nel cielo della sorgente di onde gravitazionali e la sua natura (es. coppia di buchi neri, coppia di stelle di neutroni o coppie miste) sono rese pubbliche quasi in tempo reale. Questi "alert a bassa latenza" permettono un follow-up multi-messaggero, cioè la ricerca da parte di telescopi e osservatori sulla Terra o nello Spazio di segnali di diverso tipo (ad esempio segnali elettromagnetici e neutrini) emessi dalla stessa sorgente delle onde gravitazionali.

Durante l'ultimo periodo di osservazione le collaborazioni LIGO e Virgo hanno emesso 39 avvisi in tempo reale di potenziali eventi di onde gravitazionali alla comunità scientifica: 18 di questi candidati sono stati confermati e altri 17 eventi sono stati aggiunti da ulteriori analisi offline. I risultati di queste analisi più complete e raffinate (in tutto 35 eventi) sono quelli pubblicati oggi nel catalogo GWTC-3. Di questi eventi, tuttavia, finora non sono state accertate controparti multimessaggere.

"L'analisi offline dei dati è continuata per molti mesi dopo la fine del periodo di osservazione, poiché ha richiesto un lungo e complesso lavoro da parte di diversi gruppi di ricerca, che lavorano in parallelo e utilizzano diverse tecniche di analisi - ha dichiarato Viola Sordini, ricercatrice del CNRS/IN2P3, all'Institut de Physique des deux Infinis di Lione - Infatti in alcuni casi si cercano nei dati segnali che assomigliano il più possibile alle 'forme' previste dai modelli teorici. Altri gruppi invece considerano e analizzano in dettaglio tutti i segnali, che emergono dal rumore di fondo del rivelatore, senza alcuna forma d'onda di riferimento. È un'attività estremamente intensa, in cui si coordinano centinaia di ricercatori di tutto il mondo".

Le collaborazioni scientifiche LIGO, Virgo e KAGRA hanno rilasciato oggi anche la serie completa di dati calibrati, registrati dai rivelatori LIGO e Virgo da novembre 2019 a marzo 2020. Questo permette all'intera comunità di ricerca di eseguire analisi e verifiche indipendenti, contribuendo ulteriormente alla ricchezza di risultati scientifici.

Il nuovo orizzonte dell'astronomia gravitazionale
Il Catalogo pubblicato oggi offre una visione senza precedenti di un nuovo paesaggio di eventi cosmici estremi e illuminano le caratteristiche delle popolazioni di buchi neri, stabilendo nuovi record e limiti sulle masse dei buchi neri e delle stelle di neutroni. Molti dei buchi neri formati da queste fusioni superano 100 volte la massa del nostro Sole e sono classificati come buchi neri di massa intermedia. Questo tipo di buchi neri è di grande interesse perché potrebbe giocare un ruolo chiave nella formazione dei buchi neri supermassicci al centro delle galassie. Questi sono stati a lungo teorizzati dagli astrofisici, e sono stati osservati direttamente per la prima volta con i segnali gravitazionali. Inoltre, una delle fusioni coinvolge un buco nero massiccio (circa 33 volte la massa del nostro Sole) con una stella di neutroni di massa molto bassa (circa 1,2 volte la massa del nostro Sole): questa è una delle stelle di neutroni di massa più bassa mai rilevata, sia utilizzando onde gravitazionali che osservazioni elettromagnetiche.

Infine, c'è un sistema binario per il quale gli scienziati non possono definire con certezza se la componente più leggera sia una stella di neutroni o un buco nero. La sua massa pari a 2,8 masse solari è enigmatica, poiché, secondo gli attuali modelli di evoluzione stellare, la massa delle stelle di neutroni non dovrebbe superare 2,5 volte la massa del nostro Sole. Allo stesso tempo nessun buco nero è stato mai osservato con osservazioni elettromagnetiche con massa inferiore a circa 5 masse solari. In generale, la distribuzione delle masse dei buchi neri e delle stelle di neutroni osservate mette in discussione alcuni aspetti dei modelli astrofisici che descrivono l'evoluzione e la morte delle stelle. Inoltre le proprietà fisiche delle sorgenti rilevate offrono nuovi indizi sugli ambienti astrofisici in cui è più probabile che si verifichino questi eventi cosmici estremi: ambienti stellari densi, come gli ammassi globulari, gli ammassi giovani o anche i dischi di accrescimento dei nuclei galattici attivi.

"Ricordo ancora vividamente l'entusiasmo di tutti noi scienziati mentre ascoltavamo l'annuncio pubblico della prima scoperta delle onde gravitazionali all'inizio del 2016 - ha detto Edoardo Milotti, membro della collaborazione Virgo dell'Università di Trieste e dell'INFN - Ora, meno di sei anni dopo, le scoperte riportate nel catalogo GWTC-3 aggiungono nuove preziose informazioni al nuovo, crescente campo dell'astronomia delle onde gravitazionali, e forniscono una nuova prospettiva su molti aspetti dell'Universo, come, ad esempio, le popolazioni binarie di buchi neri o stelle di neutroni."

Il futuro
I progressi realizzati in pochi anni nel campo delle onde gravitazionali sono sorprendenti, passando dalla prima rilevazione all'osservazione di alcuni eventi al mese. Questo è stato possibile grazie al programma di continui aggiornamenti tecnologici che hanno trasformato i primi pionieristici strumenti in rivelatori sempre più sensibili.

Gli osservatori LIGO e Virgo sono attualmente sottoposti a un ulteriore aggiornamento e inizieranno il prossimo quarto periodo di osservazione nella seconda metà del 2022 con una sensibilità ancora maggiore, corrispondente a un volume dell'universo quasi 10 volte più grande e quindi una probabilità molto maggiore di captare segnali gravitazionali.

"Tra gli altri aggiornamenti a Virgo, abbiamo realizzato un'ulteriore cavità ottica (la cosiddetta cavità di riciclo del segnale), che permette di migliorare la banda di sensibilità del rivelatore alle alte frequenze" - ha detto Sebastian Steinlechner, assistente professore all'Università di Maastricht e Nikhef. - "Questo corrisponde a una maggiore capacità del rivelatore di 'ascoltare' le fasi finali delle coppie coalescenti, quando due buchi neri o stelle si fondono in uno".

Il rivelatore KAGRA in Giappone è in fase di collaudo e prevede di partecipare al prossimo periodo di osservazione. L'espansione della rete di rivelatori in grado di prendere dati congiuntamente aumenterà ulteriormente la precisione della localizzazione delle sorgenti, una caratteristica chiave per i futuri sviluppi dell'Astronomia Multimessaggera.

"Questo nuovo catalogo dimostra come Virgo, LIGO e KAGRA si stiano muovendo velocemente in una nuova fase - dice Giovanni Losurdo, spokesperson di Virgo e ricercatore INFN - dalla scoperta e osservazione di eventi isolati agli studi di popolazione, un modo potente per indagare la natura dell'universo oscuro. Questo cambiamento apparirà ancora più rilevante nei prossimi cicli di osservazione quando, grazie ai recenti aggiornamenti, ci aspettiamo di rivelare fino a un evento al giorno".

Notizie correlate



Tutte le notizie di Cascina

<< Indietro

torna a inizio pagina